NASA is about to step up its planet-hunting game with the launch of TESS

On a cold, clear night in January, MIT astrophysicist George Ricker and his students stepped onto a rooftop on campus and aimed a giant camera at the highest point in the sky.

That camera, an engineering model of the four being launched with NASA’s TESS mission, revealed a night thick with stars.

“In two seconds you could see things that were a hundred thousand to a million times fainter than what you could see with your naked eye,” said Ricker, the mission’s principal investigator.

The test offered a small taste of what TESS, the Transiting Exoplanet Survey Satellite, will discover after it launches as early as Monday afternoon. The spacecraft will scan almost all of the sky for neighboring stars, searching for the dips in their brightness that signal the presence of a planet.

The goal: To find planets that are smaller than Neptune, with a radius less than about four times that of Earth. Scientists will then use other telescopes to measure the masses of 50 of them.

A few worlds TESS finds may be small, rocky bodies like Earth. And a few of those might, just possibly, be habitable places for life as we know it.

“It’s very exciting,” Ricker said. “We’re getting a chance to potentially answer a question that humanity’s always been interested in: What’s in the sky? And are there other beings, other places like Earth?”

NASA has employed space-based telescopes to find answers to these questions for decades.

Hubble and Spitzer have spent part of their missions searching for exoplanets, which are planets that orbit stars other than the sun.

Kepler was a full-time planet-hunter, and it revolutionized astronomers’ understanding of exoplanets. Launched in 2009, it was particularly interested in finding Earth-sized planets orbiting sun-like stars at a distance where water on the surface could be stable in liquid form — the so-called habitable zone.

The Kepler Space Telescope stared deep into a single patch of sky and looked for the shadows cast by planets as they crossed in front of their host stars.

To date, its primary mission has detected 2,342 confirmed and 2,235 candidate exoplanets, a clear demonstration that our region of the Milky Way contains far more planets than previously thought. Many of them are in multi-planet systems, and the most abundant kind appear to be super-Earths — a class that’s bigger than our planet but smaller than Neptune.

TESS will discover thousands of exoplanets in orbit around the brightest stars in the sky by searching for temporary drops in brightness caused by planetary transits. (NASA’s Goddard Space Flight Center/CI Lab)

TESS will take the torch that Kepler lit and run with it.

Kepler stared at just one small patch of the heavens whose stars are up to 3,000 light-years away. That made it difficult to conduct follow-up studies with other telescopes.

TESS, by contrast, will target stars that are less than 300 light-years away — and it will look in nearly all directions.

“Kepler took a poll of stars in the galaxy to find out what planets they harbor,” said Natalie Batalha, Kepler’s project scientist at NASA Ames Research Center. “TESS is getting to know the neighbors.”

A set of flight camera electronics on one of the TESS cameras that will transmit exoplanet data from the camera to a computer aboard the spacecraft, which will process it before transmitting it back to scientists on Earth. MIT Kavli Institute for Astrophysics and Space Research)

It will do that with four cameras, each focused on a different part of the sky. Together, the cameras will stare at a vertical strip of the celestial sphere stretching from the pole to the equator, proceeding to a new strip every 27 days.

TESS will wait for the regular drops in brightness caused by a planet crossing in front of its stellar host and blocking a tiny amount of starlight. The bigger the planet relative to the star, the deeper the the drop. The more frequently these dips occur, the shorter a planet’s orbit and the closer it is to its star. Scientists need to witness these dimmings multiple times before they can tell whether it’s truly evidence of a circling world.

This animation shows how a dip in the observed brightness of a star may indicate the presence of a planet passing in front of it, an occurrence known as a transit. (NASA’s Goddard Space Flight Center)

It will take about one year to scan the heavens above the southern hemisphere and another year to finish the northern hemisphere. By the end of its two-year primary mission, it will have imaged roughly 85% of the sky. Astronomers anticipate that TESS will will find hundreds of super-Earths, which don’t exist in our solar system.

“The number of known planets in the solar neighborhood is slowly growing right now,” Batalha said. “TESS will bust that open wide.”

Those stars in TESS’s survey will be brighter, which will make it easier for future missions like NASA’s James Webb Space Telescope to search for signs that their planets could be habitable.

That work will require telescopes to examine the tiny fraction of starlight that passes through a planet’s thin shell of atmosphere (if it has one) and look for the fingerprints of life-friendly molecules like free oxygen, methane and water. Separating those weak signals from the rest of the star’s light will be exceedingly difficult for small, rocky planets with compact atmospheres.

“They’re going to become not just names in a catalog — they’re going to become destinations, they’re going to take on personalities,” Batalha said of those planetary profiles. “We’re going to learn so much more about them than we ever could with the Kepler planets because they’re so nearby.”

Technicians help prepare TESS for its mission. The spacecraft is scheduled to launch as early as April 16. NASA

TESS will also be primed to identify the worlds circling red dwarfs, the small, dim stars that make up around roughly three-quarters of the stars in the sky.

Because red dwarfs are so small, their planets seem relatively big, which makes them easier to detect. And because the stars are so dim, their habitable zones are much more compact, which means TESS could witness multiple transits within each of its 27-day observing periods.

The space-based telescope could also study all kinds of other celestial phenomena, including supernovas, flare stars and active galaxies.

“When you have a space mission in the sky, usually your best discoveries aren’t the ones you planned,” said Sara Seager, the mission’s deputy science director.

TESS will search for exoplanets orbiting stars within hundreds of light-years of our solar system. Then large ground-based telescopes and the James Webb Space Telescope will be able to do follow-up observations on the exoplanets to characterize their atmospheres. (NASA’s Goddard Space Flight Center)

Because of those tight observing windows, the spacecraft won’t be able to pick up planets with longer Earth-sized orbits, as Kepler could. But since the 13 observation strips in each hemisphere overlap at the poles, TESS will have eyes on both the northern and southern polar skies for nearly a year at a time. In a few years — if TESS’s two-year mission is extended long enough — it could eventually find the kinds of rocky, habitable-zone planets that Kepler could.

And TESS could potentially last much longer than Kepler, which is set to run out of fuel sometime this year.

That’s because Ricker’s team designed a new kind of orbit — a highly elliptical 13.7-day trip that allows the spacecraft to avoid damage from Earth’s Van Allen radiation belts while also bringing it close enough to regularly send back loads of image data. The orbit is so stable that the spacecraft it won’t need to guzzle fuel to keep itself in place.

“I cannot wait for the data to roll out,” said Debra Fischer, a Yale Universityastronomer who is not involved in the mission. “It is just going to be incredibly exciting.”

Humans haven’t developed the technology to reach even the nearest stars, but that may change in the coming generations, Ricker said. If it does, Earth will already know where to send small robotic explorers.

“We basically will have discovered the most interesting systems,” he said. “The TESS planets are going to be the ones you’re going to look at.”